¿Qué es la función logarítmica?
Una función logarítmica es aquella que genéricamente se expresa como f (x) == logax, siendo a la base de esta función, que ha de ser positiva y distinta de 1.
La función logarítmica es la inversa de la función exponencial (ver t35), dado que:
loga x = b Û ab = x.
Las funciones logarítmicas son de tipo:
Es conocida como la inversa de la función exponencial f(x) = ax
Las características generales de las funciones logarítmicas son:
1) El dominio de una función logarítmica son los números reales positivos: Dom(f) = (0. + ∞) .
2) Su recorrido es R: Im(f) = R .
3) Son funciones continuas.
4) Como loga1 = 0 , la función siempre pasa por el punto (1, 0) .
La función corta el eje X en el punto (1, 0) y no corta el eje Y.
5) Como logaa = 1 , la función siempre pasa por el punto (a, 1) .
6) Si a > 1 la función es creciente.
Si 0 < a < 1 la función es decreciente.
7) Son convexas si a > 1 .
Son concavas si 0 < a < 1 .
8) El eje Y es una asíntota vertical.
- Si a > 1 :
Cuando x → 0 + , entonces log a x → - ∞ - Si 0 < a < 1 :
Cuando x → 0 + , entonces log a x → + ∞
APLICACIONES EN LA VIDA COTIDIANA
La geología como ciencia requiere del planteamiento de ecuaciones logarítmicas para el cálculo de la intensidad de un sismo. La magnitud R de un terremoto está definida como R= Log (A/A0) en la escala de Richter, donde A es la intensidad y A0 es una constante.
Los astrónomos para determinar una magnitud estelar de una estrella o planeta utilizan ciertos cálculos de carácter logarítmico. La ecuación logarítmica les permite determinar la brillantez y la magnitud.
Los astrónomos para determinar una magnitud estelar de una estrella o planeta utilizan ciertos cálculos de carácter logarítmico. La ecuación logarítmica les permite determinar la brillantez y la magnitud.
En la medicina, muchos medicamentos son utilizados para el cuerpo humano, de manera que la cantidad presente sigue una ley exponencial de disminución.
PARA REFLEXIONAR
No hay comentarios:
Publicar un comentario